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A new model selection statistical test is proposed for testing the null hypothesis that two probability 
models equally effectively fit the underlying data generating process (DGP). The new model selection 
test, called the Discrepancy Risk Model Selection Test (DRMST), extends previous work (see Vuong, 
1989) on this problem in four distinct ways. First, generalized goodness-of-fit measures (which include 
log-likelihood functions) can be used. Second, unlike the classical likelihood ratio test, the models are not 
required to be fully nested where the nesting concept is defined for generalized goodness-of-fit measures. 
The DRMST also differs from the likelihood ratio test by not requiring that either competing model pro- 
vides a completely accurate representation of the DGR And, fourth, the DRMST may be used to compare 
competing time-series models using correlated observations as well as data consisting of independent and 
identically distributed observations. 
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Considerable research in the field of model selection has focussed upon the Model Selec- 
tion Criterion (MSC) problem where multiple competing descriptions of some Data Generat- 
ing Process (DGP) are compared (e.g., Akaike, 1973; Balasubramanian, 1997; Bozdogan, 1987; 
Clarke & Barron, 1990; Djuric, 1998; Kass & Wasserman, 1995; Linhart & Zuchhini, 1986; 
Myung, Forster, & Browne, 2000; Qian & Kunsch, 1998; Rissanen, 1996; Schwarz, 1978). In 
this paradigm, some goodness-of-fit measure is used to estimate the (true) expected goodness- 
of-fit of each model (i.e., a family of probability distributions) to the underlying DGR The model 
(or models) which has (have) the smallest estimated goodness-of-fit is (are) then selected. 

This paper focuses attention upon a closely related and equally important problem called the 
Model Selection Test (MST) problem which has received relatively less attention in the literature. 
In this paradigm, the standard error of the difference in the relative fits of the two models is 
estimated and used to test the null hypothesis that both models provide equally effective fits to 
the underlying DGP at a chosen significance level. 

An important early approach to the MST problem is the Generalized Likelihood Ratio Test 
(GLRT) which is now widely used (Wilks, 1938). The essential strategy for applying the GRLT 
is to compute maximum likelihood estimates of the model's parameters using the observed data. 
The goodness-of-fit of the model is then assessed by using the computed maximum likelihood 
estimates to calculate the observed likelihood of the data given the "full" model. It is also as- 
sumed that the DGP is a probability distribution contained in the full model. Some subset of the 
model's parameters are then usually set equal to a constant (such as zero) and another maximum 
likelihood estimation procedure is then used to estimate the free parameters of the "restricted" 
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model. Thus, it is assumed in the GLRT that the two competing models satisfy a "nesting" re- 
lationship where the restricted model is nested within the full model. The GLRT is then used to 
test the null hypothesis that the observed difference in the log-likelihood goodness-of-fit for the 
two models is due to chance. 

In this paper, a new MST will be proposed which relaxes several key assumptions of the 
GLRT. First, generalized goodness-of-fit measures (which include log-likelihood goodness-of-fit 
measures as special cases) will be considered. Second, the two competing models are not re- 
quired to satisfy a nesting relationship. And third, it is not required that either model be correctly 
specified (i.e., both models may be inadequate for representing the DGP; see Foutz & Srivastava, 
1977; Golden, 1995, 1996, 2000; Vuong, 1989; White 1982, 1984 for further discussion of this 
issue). Moreover, the new MST is applicable to time-series data as well as data which satisfies 
an independent and identically distributed (i.i.d.) assumption. 

Historically, both Linhart (1988; also see Efron, 1984) and Vuong (1989) showed how the 
null hypothesis that two strictly nonnested models (i.e., two models which have no probability 
distribution in common) provide equally effective descriptions of the DGP could be tested. Prob- 
lems in applying this methodology arose however when the models were not strictly nonnested 
(see Shimodaira, 1997). Vuong addressed this problem using a two stage MST applicable to 
situations where the two competing models could be both misspecified and satisfy any type of 
nesting relationship (e.g., strictly nonnested, fully nested, partially nested, etc.) for the case where 
the goodness-of-fit measure was a log-likelihood function and the observations were i.i.d. (i.e., 
independent and identically distributed). Vuong and Wang (1993) considered a MST closely re- 
lated to the original Vuong (1989) methodology which was applicable to the i.i.d, observation 
case for a least-squares type goodness-of-fit function. More recently, Golden (2000) proposed a 
generalized version of Vuong's (1989) methodology for the i.i.d, case. From an empirical per- 
spective, Vuong's (1989) model selection theory has been successfully applied in a variety of 
task domains (for some recent applications see Barth, Beaver, & Landsman, 1998; Chen& Plott, 
1998; Gertham, 1997; Golden, 1995, 1998; Grootendorst, 1995; Wang, Halbrendt, & Johnson, 
1996; Vincent, 1999). 

Using the methods of Vuong (1989) and White (1994), this paper generalizes the devel- 
opment of DRMST theory for the i.i.d, case described by Golden (2000) to a fairly general 
time-series analysis case. Although one of the main results of this paper, Theorem 4 (Appendix), 
is in fact a special case of an important analysis 1 by Rivers and Vuong (2002), the statement and 
proof of Theorem 4 is still distinguished by its underlying modeling assumptions. These model- 
ing assumptions are substantially easier to understand and verify relative to the Rivers and Vuong 
approach. 

This paper is organized in the following manner. First, the DRMST will be introduced in 
conjunction with some essential notation. Second, the formal assumptions of the DRMST theory 
are presented and discussed. Key theorems and proofs are presented in the Appendix. These 
theorems are required to establish asymptotic upper bounds on the Type 1 error probability and 
conditions for the Type 2 error probabilities to converge to zero. The theorems are also used to 
establish the consistency of the various estimators used in this paper. 

1. The Discrepancy Risk Model Selection Test 

It will be assumed that the observed data is a particular realization of a strictly stationary 
Data Generating Process denoted by the notation DGR The assumption that the DGP is strictly 
stationary implies that all observations are identically distributed yet they may be highly cor- 
related in time. Thus, the DRMST is applicable to a large class of time-series data analysis 
problems. The DGP is a probability distribution which is denoted by a dot in Figure 1. A proba- 

1Theorem 4 in the Appendix was developed independently of knowledge of the recently published paper by Rivers 
and Vuong (2002). 
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FIGURE 1. 
Discrepancy RiskModel Selection TestNull Hypothesis. Probability distributions in this figure are depicted as black dots 
while the two probability models in this figure, M ® and M qj, specify specific sets of probability distributions. The 
minimum expected discrepancy loss (where the expectation is taken with respect to the distinguished DGP probability 
distribution) for probability model M ® is denoted by 1 ® (0 ') .  Similarly, the minimum expected discrepancy loss for 
M qj is denoted by 1 qj (g**) where the expectation is also taken with respect to the DGP. The DRMST null hypothesis is 
Ho : 1®(0 *) = 1" (~*). 

bility model is a set of probability distributions whose elements may be indexed by a "parameter 
vector." Figure 1 depicts two probability models 

.AdO = {POl, PO*, P03, P04, P05, P06} and 3.4" = {P~I ,  P~P2, P ~ * ,  P~P4, P~5} 

which consist of six and five probability distributions respectively. The "parameter space" ® 
for .a4 ~ is a subset of a p-dimensional real vector space defined such that Oj c ®. Similarly, 
the parameter space • for 3.4" is a subset of a q-dimensional real vector space defined such 
that @ c ~ .  Figure 1 also depicts the discrepancy risk functions l ~ and I q' evaluated at 0* = 
argmin l ~ and 0* = argmin I q' respectively. In particular, l ~ (0 ' )  is the expected loss associated 
with selecting the best-fitting probability distribution, Po*, from Jr4 ®. The goal of this article 
is to develop a model selection test (i.e., the DRMST) in order to test the null hypothesis Ho : 
l~(O *) = lq'(O *) that is, models Jr4 ~ and Jr4 q' provide equally effective fits to the DGR 

Referring to Figure 1, note that Jr4 ~ A Jr4 q' = {/)04} = {P~5}. That is, the two probabil- 
ity models are "overlapping" or "nonnested" since neither probability model is a subset of the 
other. Also note that the DGP is not contained in either probability model indicating that both 
probability models are misspecified with respect to the DGR In the classic Generalized Like- 
lihood Ratio Test it is assumed that one probability model (known as the "reduced model") is 
entirely contained within the other probability model (known as the "full model") and that the 
DGP is an element of the full model. As noted in the previous section, the DRMST relaxes the 
two assumptions of fully nested and correctly specified models considerably. And thus, provides 
a mechanism for the analysis of nested, nonnested, and misspecified models of stationary time- 
series data within a unified framework. 

A two-stage MST is used to test the DRMST null hypothesis as illustrated in Figure 2. In the 
first stage, a special statistical test called the Variance MST is done. If the null hypothesis for the 
Variance MST is accepted, then the DRMST null hypothesis is accepted. If  the null hypothesis for 
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FIGURE 2. 
The Discrepancy Risk Model Selection Test. The null hypothesis for the DRMST is that the two competing models have 
exactly the same expected discrepancy loss. First, the Variance Model Selection Test is done. If the null hypothesis for 
the Variance MST is accepted, the DRMST null hypothesis is accepted. If the null hypothesis for the Variance MST 
is rejected, then apply the Direct Difference Loss MST. If the null hypothesis for the Direct Difference Loss MST is 
accepted, accept the DRMST null hypothesis. If the null hypothesis for the Direct Difference Loss MST is rejected, 
select the model whose estimated expected discrepancy loss is smallest. 

the Variance MST is rejected, then the second stage MST called the Direct Difference Loss MST 
is done. If the null hypothesis for the Direct Difference Loss MST is accepted, then the DRMST 
null hypothesis is accepted. If the null hypothesis for the Direct Difference Loss MST is rejected, 
then the DRMST null hypothesis is rejected. Given the DRMST null hypothesis is rejected, then 
the model with the smallest estimated expected loss is selected. Theorem 5 of the Appendix 
summarizes the results of the theoretical analyses and establishes minimal necessary conditions 
for the DRMST to be a legitimate statistical test. Specifically, the Type 2 error probability ap- 
proaches zero as the sample size increases and the Type 1 error probability is asymptotically 
bounded from above by the DRMST significance level. 

1.1. Parameter Estimation 

The parameter estimates for both competing models are obtained by minimizing appropriate 
estimators of each model's discrepancy risk function. The first parameter estimate (denoted by 
0~) is defined as the strict global minimum of the sample discrepancy risk function, l )  : 6) x 
Fn --+ TO, 

l (O, x . )  = e°(o,  ,,i) 
i= l  
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where the notation Xn = [ X l ,  . . . ,  Xn] C F n C , ]~dn denotes the observed data. The function c ~ 
is referred to as the discrepancy loss function. 

The second type of parameter estimate 0~ # is defined as the strict global minimum of the 
model selection criterion function, C 2 = 12 + k 2 where k 2 : 6) x F n ~ 7-4 is called the 
penalty term. It is always assumed that the penalty term k 2 has the property that: ~ k  2 ~ 0 in 
probability as n ~ oc. 

These two slightly different parameter estimation goals are required in order to accommo- 
date parameter estimation methods which compute On # (such as Bayesian Ridge Regression as 
described by Draper & Smith, 1981, p. 319) as well as methods which compute On& (such as the 
Asymptotic MAP Criteria described by Djuric, 1998). In the following discussion, and through- 
out the remainder of this paper, the convention will be used that all results which hold for both On # 
or On& will be stated in terms of the quantity On*. Moreover, the notation On* and On* will be used 
to refer to the parameter estimates associated with the models A.4 ~ and A.4* respectively. 

1.1.1. Maximum Likelihood Estimation 

In the case of i.i.d, observations, an important choice of the functional form of c ~ (consid- 
ered in the analysis by Vuong, 1989) is to choose c ~ to be a log-likelihood loss function so that 
c ~ (0, xi) = - log (p (xi I 0)) where p (xi I 0) is the likelihood of observation xi given parameter 
vector 0. Now consider the time-series case involving correlated and identically distributed ob- 
servations (Xl, x2, . . . )  which are presumed to be generated by a k-th order Markov probability 
law of the form p(xt I xt-1, . . . ,  xt-k; 0). The log-likelihood loss function for this stochastic 
process is obtained by defining c ~ such that 

c®(O, Yt) = - l o g  [p(xt I X t - 1  . . . . .  Xt_k; 0 ) ]  

with Yt = [xt, X t - 1  . . . . .  Xt-k]. 

1.1.2. Defining the Parameter Space 

The DRMST theory assumes that the model parameter space, (9, is a convex, closed, and 
bounded subset of 7-4P. It is also assumed that the objective function 12 has a unique minimum 
(i.e., a strict global minimum) on the model parameter space. If  the log-likelihood discrepancy 
risk function is convex over a large region of the parameter space (as is the case for linear expo- 
nential models), then it is reasonable to define 6) to be very large. 

On the other hand, suppose the discrepancy risk function has multiple strict local minima 
and/or strict global minima. This latter situation frequently arises in nonlinear regression model- 
ing and artificial neural network modeling (e.g., Golden, 1995; White, 1989). In this case, simply 
choose 6) to be a sufficiently small closed, bounded convex region which contains exactly one 
strict local minimum in T~P which happens to be the unique global minimum on 6). Such a 
formulation of the problem also provides a mechanism for using the DRMST to test the null 
hypothesis that two given strict local minima are "equally deep" (see Gan & Jian, 1999, for a 
related analysis and discussion). 

1.1.3. Checking for Convergence of Parameter Estimation Algorithm 

The parameter estimates are defined as the solution to an equation of the form: VC 2 or Vl 2 
depending upon the particular application. Accordingly, an appropriate norm of the gradient 
vector (e.g., the element of the gradient vector with the largest absolute value) 

Vl n (0 n , Xn) 
i = 1  

(1) 
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should be computed and checked to confirm the gradient norm is sufficiently close to zero. Verifi- 
cation of this condition indicates that the parameter estimation algorithm has properly terminated 
upon a critical point of the objective function lff. 

1.1.4. Checking Uniqueness of the Parameter Estimates 

Insights into whether or not a random variable which takes on the value of the critical point, 
On*, of lff is converging to a locally unique solution, 0 ' ,  as the sample size n increases may be 
obtained by inspecting the statistic A )  = V21ff evaluated at On*. 

The matrix function An is defined by the formula 

0q,p A n _] 

where 0p,q is a p x q dimensional matrix of zeros, A 2 = V21ff, and A~ = V21~. The matrix 
An* is obtained by evaluating An at o9" = (On*, 0n*). 

If  all eigenvalues of An* are strictly positive, then this indicates the critical point On* is a 
strict local minimum of lff and 0 "  is a strict local minimum of l~. The condition number of 
An* (defined by the ratio of the largest to smallest eigenvalue of An*) is then computed. A large 
condition number provides an indication that as the sample size becomes large the critical point 
may not possibly correspond to a strict local minimum of the objective function (i.e., be"locally 
unique"). Computation of An* for several choices of n (i.e., several subsets of the data sample) 
may be helpful in obtaining insight into the issue of whether or not An* is converging in fact to a 
positive definite matrix A* (as opposed to a singular matrix). Note that this analysis is analogous 
to checking for the presence of multicollinearity in the special case of linear regression. 

1.2. Checking a Necessary Condition of the Asymptotic Approximations 

An important analysis which is necessary but not sufficient to establish that the asymptotic 
approximations provided in this paper hold involves examining another matrix called Bn* in a 
manner analogous to the way An* was examined. The construction of the relevant statistics re- 
quires the use of some broad assumptions regarding the DGR Although these assumptions will 
be discussed in greater detail later, for now it is enough to note that one must make an assumption 
regarding the statistical independence of the members of the stochastic process generated by the 
DGR 

Specifically, if all elements of the DGP are statistically independent we say the DGP is a 
r-dependent process with r = 0. More generally, denoting the DGP as the stochastic sequence of 
observations xl, x2, • • •, then we say the DGP is r-dependent if there exists a finite nonnegative 
integer constant r such that ii and i j  are statistically independent for all l i - j I > r. Thus, a 
DGP with r = 3 can also be described as a DGP with r = 4 or even a DGP with r = 10000. 
Thus, in situations where the exact value of r is unknown, a conservative strategy might involve 
choosing larger as opposed to smaller values of r. 

Define Ji,r = {m c {1, 2, 3 . . . . .  n} : I m - i I -< r}. Let c~ denote the discrepancy loss 
function c ~ for model 3//~ evaluated at observation xi. That is, c~ = c~(O, xi). The random 

variable ~ is similarly defined by the formula ~ = c~(O, f~i). The quantities c/* and ~/* are 

defined in a manner analogous to the definitions of c~ and g~ but with respect to the competing 

model .1.4". 
Now define the matrix function 

B2 =  vc21 vc71 
i = 1  jcJi,r 

define the matrix function 
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i=1 j c  J/,r 

and define the matrix function 

i=1 j c  J/,v 

The matrix function Bn is then defined by the formula 

F B~ B~,q'- 
Bn • l 

L an* 
* * *) Evaluating the matrix function Bn at the point o) n = (O n , On yields the random matrix B*. 

Theorem 1 of the Appendix shows that B* converges with probability one to a constant matrix B*. 
This observation suggests a practical mechanism for checking a key assumption of the DRMST 
Theory (see Assumption A1 1 in sec. 2) which is that B* must be positive definite. To check this 
assumption, the condition number of B* may be checked in a manner similar to the analysis of 
An*. If  the condition number of Bn* does not appear to be the realization of an observation in a 
stochastic sequence converging to a finite positive number, then this indicates Assumption A1 1 
may not be true. If  Assumption A1 1 is false, then the DRMST theory results may not be valid. 

1.3. Check ing  the D i s c r epancy  Au tocorre la t i on  Coef f ic ient  

If  it is assumed that the observations are not independent, then it is helpful to examine 
a specially-defined correlation coefficient which is the estimated expected average correlation 
between ~) - ~ and ct+ k ~ - ct+ k -q '  (for k = 1, 2, . . .) .  This special correlation coefficient is 
called the es t ima ted  d i sc repancy  au tocorre la t ion  coef f ic ient  and is defined by the formula rn = 
?(o~*, Xn) where 

n ® 

2r  ~ 1 ( c ~  - c? )  2 

Define 0* and 7** as the respective unique global minima of the discrepancy risk functions, 
I e, and I q' . Define o3' = [0 ' ,  7**]. The t rue d i sc repancy  au tocorre la t ion  coef f ic ient  is defined by 
the formula r* = ?* (o3') = ?* ([0 ' ,  7**]) where 

r - ci )(Ci+d (2) f ,  =  j=l - .  - 0  _ 

where all expectations are taken with respect to 51n. 
In situations where the DGP does not consist of independent observations, the DRMST 

theory developed in this article assumes that r* ¢ - 1 / ( 2 r ) .  Specifically, the asymptotic distri- 
bution of the DRMST statistic is derived under the assumption that r* ¢ - 1 / ( 2 r ) .  In order to 
estimate r*, the number rn may be computed from the sample since rn is an asymptotically unbi- 
ased estimate of r* as shown in Theorem 1 of the Appendix. One practical approach to checking 
the condition that r* ~ - 1 / ( 2 r )  would be to compute rn for different subsamples of different 
sample sizes from the data in order to determine if rn appears to be converging to the number 
- 1 / ( 2 r ) .  

The meaning of the condition r* ¢ - 1 / ( 2 r )  can be clarified by defining the function 
cN : (6) × ~ )  --+ [0, oc) such that 
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17 

j = l  

(3) 

where all expectations are taken with respect to 7~,,. In the special case where r = 0 (i.e., the 
observations are independent), then the second term in (3) vanishes, and it follows that the null 
hypothesis 

and the null hypothesis 

H 0 : 0 - 2 ,  ~ 0 - 2 @  * z z~ ,7'*)  0 

(7 2 
H~ ( r )  : c®(O *, xt) = cq'(O *, xt) w.p.1 

are equivalent. 
The case where r is a positive integer is now considered. Combining (3) and (2) it follows 

that 

¢r2. = (1 q- 2r r*)E{(gff  gq,)2~ 
- -  i J" (4) 

Inspection of (4) shows that by assuming r* ¢ - 1 / ( 2 r )  (i.e., (1 + 2 r r* )  ¢ 0) it follows that the 

null hypothesis Ho : ~r2. = 0 and the null hypothesis Hg 2 ('C) are equivalent. Thus, a statistical 

test designed to test the null hypothesis that ~r2. = 0 may be used to determine if  one model fits 
the observed data significantly better than another model. This new statistical test will be referred 
to as the "Variance MST" and is discussed in the next section. 

1.4. The Variance Model Selection Test 

As noted at the end of the previous section, the Variance MST is designed to test the null 

hypothesis H~ 2 ( r )  : c ~ (0 ' ,  i t )  = c q' (0*,  i t )  w.p.1. Semantically, the null hypothesis H~ 2 ( r )  
specifies a state of the world where the null hypothesis for the DRMST is accepted as well. The 
Variance MST is generally quite computationally intensive and can be avoided if one can demon- 

strate analytically that H~ 2 ( r )  is false. Linhart (1988), for example, simply used the Direct Dif- 
ference Loss MST without using the Variance MST since he considered two log-likelihood loss 
functions where the two competing probabil i ty models were a lognormal model and a gamma 
model. 

In many commonly arising situations, however, the Variance MST can not be avoided. For 
example, consider the situation where the loss functions have the form of negative log-likelihood 
loss functions. Also assume that the Variance MST is being used to compare two probabil-  
ity models where one probabil i ty model  is fully nested within the other. If  the reduced model 
contains the optimal distribution corresponding to the DGR then that same optimal distribution 
will be obtained from parameter estimation on the full model. Thus, the general case where 
the models are fully nested and the null hypothesis is true corresponds to a situation where 
c ~ (0 ' ,  i t )  ---- c q' (0*,  i t )  w.p. 1. The Variance MST can not generally be avoided in such situa- 
tions. 

The calculations required for the Variance MST are now provided. First, compute the dis- 
crepancy variance, (o-)v,)2 = o-2 n (o) n*), given by the formula 

n i = 1  jcJi,v 

evaluated at co n. 
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Second, compute the p + q-dimensional Rn matrix function defined by the formula 

- ® ® - 1  - B n '  [A n ]  ] _ B n [ A  n]  ® *  * -1 

Rn = _onn~"® rA®l-lt--n J B n* [A~*]-I /j 

• to obtain where B~, A~ have dimension p and Bn "I', An "I' have dimension q. Evaluate Rn at o) n 
the matrix R*. Then, use R* to compute a p + q-dimensional vector wn whose i-th element is 
the square of the i-th eigenvalue of R*. 

Third, the probability that a weighted chi-square random variable with weight vector equal 
to wn exceeds n (~r},,)2, p (22 (wn) > n(~r},, )2), is then computed. A weighted chi-square random 

variable, 22(w) with weight parameter vector w, may be expressed by the formula: 22(w) = 
a w i ~  zi are [Wl, wd] ~ i = 1  where i.i.d, normally distributed random variables and w . . . .  , 

is called the weight parameter. Thus, the usual chi-square random variable with d degrees of 
freedom would be represented using this notation by the quantity 22( ld)  where ld denotes a d- 
dimensional vector of ones. Computer software for evaluating the weighted chi-square random 
variable cumulative distribution is not generally available unlike computer software for evalu- 
ating the chi-square random variable cumulative distribution. Accordingly, a special case of the 
method of Sheil and O'Muircheartaigh (1977; see Davies, 1980, for an alternative method) is 
provided for evaluating the cumulative distribution function for the weighted chi-square random 
variable in terms of the cumulative distribution functions of chi-square random variables. 

Following the approach of Sheil and O'Muircheartaigh (1977), let e be the maximum abso- 
n(o. ,  ~2~ lute error permitted in the approximation,/3~ (22 (w) > ~ zn J J, of the probability p (22 (w) > 

• 2 n(~rzn) ). Let fl = 0.90625Wmin, where Wmin is a smallest element of w. Let wi be the i-th 
element of w. 

p+q 

#0 = I-I (fl/wi)l/2' 
i=1 

where  

and 
k-1 

= k -1 ~gk-j#j ,  k = 1, 2 . . . .  NE, I& 
j=0 

r q; 
s=l L W s J /  

Sheil and O'Muircheartaigh (1977) show there exists a positive integer N~ such that for a 
given positive number e: 

( ~ )(22(lp+q+2NE) < - - n  (O')n)2)  
- # k  P < ~. 

k=0 -- fl 

Then, with 

/SE(22(wn) > n(~r),) 2) = 1 - E l & p  x2(lp+q+2k) < 
k=o - 7 1 

Sheil and O'Muircheartaigh (1977) show that the absolute approximation error is uniformly 
bounded by e. That is, 

/ ~  ( 2 2 ( w )  • 2 • 2 > n(~z,,) ) - p(22(w)  > n(~z,,) ) < ~. 

Given a method for computing/5~ (22(wn) > n(c~},,) 2) _> a, the null hypothesis of the Variance 
MST can be tested by the following procedure where a is the significance level of the test. If  

• 2 /?~(22(wn) > n(~zn)) _> a, accept the Variance MST null hypothesis; otherwise reject the 
Variance MST null hypothesis. 
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As shown by Theorem 3 in the Appendix, the Type 1 error probability of the Variance MST 
(i.e., accepting the null hypothesis when the null hypothesis is false) has an asymptotic upper 
bound of o~ as the sample size becomes large. In addition, Theorem 3 also shows that the Type 2 
error probability of the Variance MST (i.e., rejecting the null hypothesis when the null hypothesis 
is true) converges to zero as the sample size becomes large. 

1.5. The Direct Difference Loss Model Selection Test 

The null hypothesis for the Direct Difference Loss MST is identical to the null hypothesis of 
the DRMST (i.e., Ho : l~(O *) = lq'(T**)). However, unlike the DRMST, the Direct Difference 
Loss MST makes the additional assumption that the null hypothesis of the Variance MST is false. 

Let o~ be the chosen significance level for the DRMST (e.g., o~ = 0.05 or o~ = 0.01). 
Compute 

( c 2  - ( ) 
Zn z u* 

Zn 

where ~r* is the square root of the discrepancy variance computed in the Variance MST. It Zn 
is assumed that ~r* is strictly positive since the Direct Difference Loss MST is only invoked Zn 
if either: (i) the Variance MST null hypothesis has been rejected, or (ii) direct mathematical 
analysis shows ~r*z, must converge almost surely to a strictly positive real number (see sec. 1.3; 
also see Linhart, 1988). 

Referring to Figure 2 and using the notation of section 1.3, if p(22(1)  > Z 2) > o~, then 
accept the DRMST null hypothesis Ho : l~(O *) = lq' (7**). If  p(22(1)  > Z 2) < o~, then reject 
the DRMST null hypothesis. Assuming the DRMST null hypothesis is rejected, select model 
Jk4 ® ifC~ (~*) > C~(O*) and model .A4 q' i fC~ (~*) < C~(O*). 

As shown by Theorem 4 in the Appendix, the Type 1 error probability of the Direct Differ- 
ence Loss MST has an asymptotic upper bound of o~ as the sample size becomes large. 

In addition, Theorem 4 also shows that the Type 2 error probability of the Variance MST 
converges to zero as the sample size becomes large. 

1.6. The Discrepancy Risk Model Selection Test 

The DRMST (Discrepancy Risk Model Selection Test) is designed to test the null hypothesis 
that the two competing models have exactly the same expected discrepancy loss. The Discrep- 
ancy Risk Model Selection Test (DRMST) is described in Figure 2. First, the Variance MST is 
done. If  the null hypothesis for the Variance MST is accepted, the DRMST null hypothesis is 
accepted. If  the null hypothesis for the Variance MST is rejected, then apply the Direct Differ- 
ence Loss MST. If  the null hypothesis for the Direct Difference Loss MST is accepted, accept the 
DRMST null hypothesis. If  the null hypothesis for the Direct Difference Loss MST is rejected, 
select the model whose estimated expected discrepancy loss is smallest. 

Although Figure 2 indicates that the DRMST null hypothesis is accepted if either the Vari- 
ance MST or the Direct Difference Loss MST null hypotheses are accepted, the Variance MST 
and Direct Difference Loss MST null hypotheses have distinct interpretations. Accepting the 
null hypothesis for the Variance MST is equivalent to concluding c ~ (0 ' ,  i t )  = c q' (7**, i t )  w.p. 1 
while accepting the null hypothesis for the Direct Difference Loss MST is equivalent to accept- 
ing the DRMST null hypothesis l~(O *) = lq' (7, *) under the assumption the Variance MST null 
hypothesis is false. 

Theorem 5 in the Appendix shows that if the significance level used for both the Variance 
MST and the Direct Difference Loss MST in the testing procedure is ce, then the Type 1 error 
probability for this two-stage testing procedure is asymptotically bounded by o~ as well. In ad- 
dition, Theorem 5 shows that the Type 2 error probability for this two-stage testing procedure 
approaches zero as the sample size becomes large. 
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2. Assumptions 

The following assumptions described in this section establish the following properties asso- 
ciated with the statistical tests developed in the previous section. Specifically, these assumptions 
are used in the Appendix of this article to demonstrate that as the sample size becomes suf- 
ficiently large: (a) the probability of a Type 1 error is asymptotically bounded from above by a 
pre-specified significance level, and (b) the probability of a Type 2 error converges to zero. These 
assumptions are also used in the Appendix to establish that the critical estimators in the analysis 
are strongly consistent estimators. It should be emphasized that these conclusions establish only 
minimal conditions for the legitimacy of these large sample testing procedures. However, consid- 
erable empirical work has provided strong support that many of these testing procedures are ef- 
fective in specialized applications for typical sample sizes (e.g., see Barth, Beaver, & Landsman, 
1998; C h e n &  Plott, 1998; Gertham, 1997; Golden, 1995, 1998; Grootendorst, 1995; Vincent, 
1999; Wang, Halbrendt, & Johnson, 1996). 

2.1. Data Generating Process Assumptions 

Assumption A1. The sequence of d-dimensional real vectors defining the observed data 
Xl, x2, . . .  are a realization of the DGR i l ,  i2, . . . ,  on a complete probability space (7~ d~,  
]3dec, PDG P ). 

In practice, statistical tests must be computed using a data sample, Xn, consisting of n d- 
dimensional real vectors such that: [Xl, . . . ,  xn] _c 7~ dn. However, theoretical arguments based 
upon probability theory make claims only about the n d-dimensional random vectors ~1, • • •, ~n 
from the DGR Thus, Assumption A1 provides the required theoretical linkage between the ob- 
served data (which is merely a sequence of n d-dimensional real vectors) and the underlying 
probability model associated with a stochastic sequence of n d-dimensional random vectors. 

Additionally, Assumption A1 specifies constraints upon how the random vectors may be 
represented (i.e., the sample space modeling assumptions) through specification of the nature 
of the measurable space (7~ d~,  Bd~) .  This measurable space is assumed to be common to all 
probability models under consideration. The constraints on the measurable space are defined in a 
sufficiently general matter so that the probability models relevant to the theory described in this 
paper include probability models for continuous random variables, discrete random variables, 
and "mixed" continuous-discrete random variables. For further discussion of Assumption A1, 
please see White (1994, pp. 1-7). 

Assumption A2. The DGR i l ,  i 2 , . . . ,  is bounded (i.e., there exists a finite constant K such 
that l i t  I < K for all integer t w.p. 1.). 

The physically reasonable Assumption A2 implies that all observations generated by the 
DGP w.p. 1 have a maximum magnitude. Thus, Assumption A2 is not applicable to stochastic 
processes which are not bounded (e.g., a sequence of i.i.d. Gaussian random variables). Assump- 
tion A2 is also immediately applicable to probability models such as logistic regression models 
which are defined with respect to finite sample spaces. Assumption A2 might appear to rule out 
inference involving probability models such as Gaussian models since such models do not have 
bounded sample spaces. In practice, however, this assumption is not restrictive (e.g., inference 
using Gaussian probability models is permissable) since the assumption that the probability mod- 
els under consideration are correctly specified is not required. For example, define a DGP {it} 
such that i t  is the average of a large finite number of bounded uniformly distributed random 
variables with common finite mean and common finite positive variance. Then i t  is bounded and 
has an approximate Gaussian distribution by the Central Limit Theorem. Such a DGP may be 
reasonably modeled by a Gaussian model. 
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Assumption A3. The DGP is r -dependent  which means that there exists a finite nonnegative 
integer r such that i s  and i t  are independent for all I s - t I > r .  

Assumption A3 corresponds to the physically reasonable assumption regarding the DGP 
which essentially states that two events separated by a sufficiently long time interval r will be 
statistically independent. Note that the case of independent observations corresponds to the r = 0 
case. Also note that the r -dependent  assumption rules out DGP stochastic processes defined 
implicit ly by most stochastic dynamical  systems. For example, consider the stochastic process 
Xl, x2, • . .  defined such that 

i t + l  = [~it -]- fit (5) 

where fit is an i.i.d zero-mean bounded stochastic process. The stochastic process defined in (5) 
is not r -dependent  since i t  is always functionally dependent upon i l  as t ~ oc. On the other 
hand (if ]/~ ] < 1 in (5)) the functional dependence of i t  on i l  decreases as t ~ oc suggesting 
that a probabil i ty model  designed to represent a DGP of the form of (5) would yield a good 
approximation to a r -dependent  DGR 

Assumption A4. The DGP stochastic process, Xl, x2, . . .  is stationary (i.e., the joint  distri- 
bution function of i l ,  i2,  . . .  is identical to the joint  distribution function of i ra+l ,  ira+2, . . .  for 
m =  1,2 . . . .  ). 

Assumption A4 states that the joint distribution of the observed data is time-invariant. Al-  
though Assumption A4 implies that the observations are identically distributed, Assumption A4 
does not require the observations to be independent. The combination of Assumption A4 with 
Assumption A3 defines a broad class of time-series DGP stochastic processes which includes the 
special case of i.i.d observations when r = 0. 

Finally, it should be emphasized that using the methods of White  (1994; also see Rivers and 
Vuong, 2002) that Assumptions A2 through A4 can be generalized to characterize a large class of 
asymptotically second-order stationary stochastic mixing processes with appropriate bounds on 
the moments of such processes. The relatively simple assumptions provided here, however, are 
substantially easier to understand and verify and yet are applicable to many important cases of 
interest. An important contribution of this paper is the presentation of the stronger assumptions 
embodied in A2 through A4 and an in-depth exploration of the interpretation and consequences 
of these strong assumptions. 

2.2. Model Selection Criterion Assumptions 

Assumption A5. Let 6) c T~P be a convex, closed, bounded, and nonempty set. Assume the 
discrepancy loss c ~ : 6) x F ~ T~ where F _c T~ d. 

Definition 1: A piecewise continuous function Let 30, 3 1 , . . . ,  3M be a finite set of M + 1 
real finite numbers such that 3 j -1  < 3j, j = 1 , . . .  M. Define 

7)j = { x = [ x l  . . . . .  xd] c 7 ~  d : 3 j _ l < x i  < 3 j , i =  1 . . . .  d} 

and 77j as the closure of 7Pj, j = 1 . . . .  M. Let F = uM_17?j. Define a bounded function 
f : F ~ T~ such that the restriction of f ,  f j ,  on 7Pj is continuous (_j = 1 . . . . .  M).  In addition, 
assume that each such f j  has the property that an extension of f j  to 7Pj exists which is continuous 
on 7}j, j = 1 . . . . .  M. A function f with these properties is called a piecewise continuous 
function on F. 
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A vector-valued function f : F ~ T¢d is said to be a piecewise continuous function on F if  
all d of its components are piecewise continuous functions on F _c T¢d. Note that a continuous 
function on a closed subset of T¢d is a piecewise continuous function on that closed subset as 
well. 

An example application of the piecewise continuous function concept occurs in the context 
of considering probabili ty models which possess "recoded" predictor variables. For example, 
consider a linear regression model ~ = m~ + b + fi where z = f (x)  is the "recoded" predictor 
variable, ~ is the dependent variable, fi is zero-mean Gaussian noise with known variance, and 
the parameter vector O = (m, b). The function f is defined such that f (x)  = 1 for x > 0, 
f (x)  = 0.5 for x = 0, and f (x)  = 0 for x < 0. The above definition of a piecewise continuous 
function can be used to verify that f is piecewise continuous. First, note that f is bounded. Now 
define D1 = {x : x < 0} and D2 = {x : x > 0}. The restriction of f to D1, f l ,  is continuous and 
the restriction of f to D2, f2, is continuous. In addition, it is possible to extend f l  to D1 so that 
the extension of f l ,  f + ,  is continuous by choosing f +  (0) = 0. Similarly, the extension of f2 to 

D2, f + ,  can be made continuous by choosing f +  (0) = 1. 

Assumption A6. Let F be a closed subset of T¢d. Assume the discrepancy loss c ~ : ® x F 
7-4 has the property that c®(O, .), Vc®(O, .), and V2c®(0, .) exist and are piecewise continuous 
o n F f o r a l l 0  • ® .  

It can be shown that Assumption A6 (and Assumption A8 below) are actually stronger than 
necessary since all theorems and results in this paper are valid if  one replaces the phrase "piece- 
wise continuous function" with the phrase "Borel sigma-field measurable function." However, 
the stronger version of A6 (and A8 below) is used since: (a) every piecewise continuous func- 
tion on a closed subset of a Euclidean vector space is a Borel sigma-field measurable function 
(see Theorem 2.5 of Gordon, 1994), (b) the piecewise continuous function concept is much more 
widely accessible to practitioners in the field, (c) from an engineering perspective little generality 
is lost by requiring that the relevant functions are piecewise continuous (instead of measurable), 
and (d) the stronger piecewise continuous assumption dramatically simplifies the other assump- 
tions of this analysis as well. 

Assumption AT. Let F be a closed subset of ~ d  Assume the discrepancy loss e ® : ~ × F 
T¢ has the property that for all x • F: c ~ (., x), Vc ~ (., x), and V2c ~ (., x) exist and are continuous 
on ®. 

Assumption A7 allows DRMST theory to be applicable to a broad range of differentiable 
discrepancy loss functions. It should be noted, however, that some important loss functions such 
as root mean square error loss functions (e.g., c~(O, x) = I x - 0 l, ® = {0 : l0 I < K,  K > 0}) 
do not have a continuous well-defined gradient and therefore can not be handled within the 
DRMST theoretical framework. 

Assumption A8. Let F n be a closed, bounded, and convex subset of T¢ dn. For each n = 
1, 2 , . . . ,  assume kff : ® x F n ~ T¢ is a piecewise continuous function in both of its arguments. 

Assumption A8 permits the penalty term kff = kff (On, Xn) to be functionally dependent 

upon the data sample Xn and/or the respective optimal parameter estimate 0n. The function kff 
is called the penalty function. 

Assumption A9. Assume that the penalty term , ~  has the property that: x/~,~ff ~ 0 in 
probabil i ty as n ~ oc. 

Assumptions A8 and A9 allow for the use of a large variety of model  complexity penalty 
terms (see Sin and White, 1996, for a general review and general analysis) such as Akaike  Infor- 
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marion Criterion (AIC) penalty terms (e.g., Akaike, 1973; Bozdogan, 1987; Linhart & Zucchini, 
1986), Bayes Information Criterion (BIC) penalty terms (e.g., Djuric, 1998; Kass & Wasserman, 
1995; Schwartz, 1978), and Minimum Descriptive Length (MDL) penalty terms (e.g., Balasub- 
ramanian, 1997; Clarke & Barron, 1990; Qian & Kunsch, 1998; Rissanen, 1996). 

2.3. Solution Assumptions 

AssumptionAlO. Assume for some 0* in the interior of 6) that Vl ~ evaluated at 0* is a 
vector of zeros. Assume V21 ~ is positive definite on 6). 

Assumption A10 is used to guarantee the existence and uniqueness of a solution o}* = 
(0 ' ,  g,*) and is relevant for constructing appropriate termination conditions for a given parameter 
estimation algorithm as described in section 1.1 (see Theorem 2 in the Appendix). Specifically, 
the assumption that the gradient of l ~ vanishes at 0* may be used as the basis for determining 
whether the parameter estimation algorithm has converged as discussed in section 1.1.2. 

The assumption that the matrix-valued function V2I ~ is positive definite on 6) (and the 
corresponding assumption that V21 * is positive definite on qJ) in Assumption A10 is used to 
guarantee that o}* = (0 ' ,  g,*) will be unique on £2. Note that this assumption is formulated to 
facilitate the choice of £2 = 6) x qJ. In practice, when the discrepancy risk functions are convex 
it is convenient to choose £2 to be very large. When the discrepancy risk functions have multiple 
strict local minima, then £2 is typically chosen to be a sufficiently small neighborhood so that 
each model under consideration is associated with a unique strict local minimum (i.e., 6) and qJ 
each contain a unique strict local minimum with respect to l ® and l 'p respectively). 

The condition that V21 ~ is positive definite on 6) may be verified analytically in some situ- 
ations by simply checking that or[v21~]O is strictly positive for all 0 c 6). If  an analytical anal- 
ysis is not possible, then V21 ~ (0 ' )  may be estimated ~ * by A n (O n ) as discussed in section 1.1.4. If  

® * A n (O n ) is approaching a positive definite matrix as the sample size n becomes large as discussed 
in section 1.1.4, then this suggests that 0* is a strict local minimum. If 0* is a strict local mini- 
mum, then this logically implies that a sufficiently small neighborhood, 6), of 0* exists such that 
0* is the unique global minimum on 6). 

Assumption A l l .  Assume B* is positive definite. 

The assumption that the matrix constant B* is positive definite (see section 1.2 for the def- 
inition of B*) is required in order to apply an appropriate central limit theorem for dependent 
random variables. 

Assumption A12. Assume r* ~ - 1/(2r) .  

The quantity r* in Assumption A12 is formally defined in section 1.3. Assumption A12 will 
usually be satisfied in practice. Also note, that if the observations are i.i.d, then Assumption A12 
is satisfied (see sec. 1.3). If the observations are not i.i.d., then r* can be estimated by rn (see 
sec. 1.3) and empirically checked to see if rn ~ 0 w.p.1 as n ~ oc. An example of a situation 
where Assumption A12 is not satisfied occurs when c~(O *, f~t) - c *  (g,*, f~t) = ~t - ~t-1 where 
{~t} is a white noise process with strictly positive finite variance. 2 

3. Summary 

This article has introduced an extension of Vuong's (1989; also see Golden, 2000) large 
sample model selection test theory called the Discrepancy Risk Model Selection Test (DRMST). 

2The author gratefully acknowledges the contribution of this example from one of the referees for this paper. 
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The DRMST generalizes the quasi-maximum likelihood discrepancy measures considered by 
Vuong (1989) for the i.i.d, case to a substantially more general case which permits generalized 
discrepancy loss functions with penalty terms in the context of time-series data analysis. An 
important contribution of DRMST theory is that its assumptions are easily verifiable, yet the 
theory is broadly applicable to problems involving arbitrary twice continuously differentiable 
objective functions such as: log-likelihood type objective functions with model selection criteria 
such as AIC, BIC, and MDL. 

DRMST theory is applicable to constructing large sample model selection tests for a num- 
ber of important problems. First, a DRMST model selection test for comparing competing nested 
or nonnested probability models with different functional forms can be constructed. To illustrate 
this point, let {ht} denote a strictly stationary r-dependent Gaussian stochastic process whose 
elements are identically distributed yet highly correlated. Using the DRMST theory, the linear 
regression model Yt = mli t  + bl + ht can be compared with the nonlinear regression model 
Yt = ( m e i t  + be) e + ht with respect to the DGP {@t, it)}. Note these two probability mod- 
els are not only nonnested but also have distinct functional forms. Second, a DRMST model 
selection test for comparing competing preprocessing transformations of the DGP for a given 
probability model can be constructed. Thus, for example, the model Yt = m 1 [it] e + bl + ht can 
be compared with the model Yt = me[i t]  4 + be + ht in order to determine which preprocess- 
ing transformation is more appropriate. Third, a DRMST model selection test for determining 
which of two strict local minima is "deeper" can be constructed as well through an appropri- 
ate choice of the joint model parameter space f2. For example, this latter case would be rele- 
vant for log-likelihood loss functions associated with nonlinear regression models of the form: 
Yt = sine(air) + 2 cosine(bit)  + ht (0 = [a, b]) which have multiple strict local minima. And fi- 
nally, all of the above analyses are applicable to misspecified probability models of a broad class 
of stationary stochastic processes. Although some of the calculations associated with DRMST 
theory require considerable programming effort, user-friendly software implementations should 
be readily available in the near future for linear, logistic, and multinomial logistic regression 
models (e.g., Martingale Research, 2001). 

Appendix 

Theorems 

Let F _c 7~ d. Let c ~ : ® x F ~ 7~ be some piecewise-continuous function on ® and F. 
Then the random function, E~, corresponding to c ~ maps an element, 0 • ® _c 7~P, into the 

random variable c ~ (0, ~i). 
Define l ~ : ® ~ T~ such that for all 0 • ®: l~(0) = E{c~(O, ii)} where the expectation 

is taken with respect to the DGR Let l-~ be a random function with the property that: [~ ~ l ~ 

uniformly on ® w.p.1 as n ~ oc, then the random function [ff is said to be a strongly consistent 
estimator of the deterministic function l ~. 

Theorem 1: Estimator Consistency. Assume Assumptions A1 through A9 are satisfied for 
loss functions e ~ and e* with respect to a particular DGP {~t}. Then the random functions 

In , g n  , g n  , A n  , A n  , B n  , B n  , - n  , - n  , zn' 

are strongly consistent estimators of the following list of continuous functions: 

l ~ = E(c~( ., ~i)}, l*  = E(c*(., ~i)}, g~ = E ( V c ~ (  ", ~i)}, 

g~' = E{Vc~'( ., ii)}, A ® = E{V2e®( ., ii)}, A ~' = E{V2eqJ ( ., ii)}, 

17 

B e = ~ E{Ve®( ", i i ) [Ve®( ., ii+j)]T}, 
j = - r  
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r 

Bq' = E E{Vcq ' ("  xi)[Vcq'("  Xi+j)]T}' 
j = - r  

r 

Be'q '  = E E{Ve®(" i i ) [Veq ' ( "  ii+j)]T}' 
j = - r  

B q',~ = [B~,q'] r ,  r* as defined in section 1.3, 

r 

~r 2 = E { C ~  _ {q,)2~i , + 2 E E{({~ - {/*)({~+j - {~j )} ,  
j=l  

(6) 

and 

R = i -B®[A®]-I 
B'P,® [A®]-I 

-B®,q '  [Aq ' ] - I -  

B q, [A q, ] - 1 

respectively. 

Proof of  Theorem 1. The proof of Theorem 1 follows immediately from using Assumptions 
A1 through A9, the definitions of White (1984, pp. 40-41), and Theorem A.2.2 from White 
(1994, pp. 351-352). [] 

Theorem 2: Consistency of  Estimates. Assume Assumptions A1 through A10 are satisfied 
for loss functions c ~ and c*  and penalty terms/c) and ~:n* with respect to a particular DGP {it}. 

Define ()* = argmin [~ on 6). Define ~}*n = argmin [~ on * .  Then (5* = (O n ,-* ]**) --+ oo* w.p. 1. 

Proof of  Theorem 2. Using Theorem 1 (this paper) and Theorem 3.4 of White (1994, p. 28), 
and Assumptions A1 through A10 it follows that (5* --+ o~* with probability one as n --+ oc since 
co* is the unique global minimum on S2 by Assumption A10. [] 

Theorem 3: Variance MST. Assume Assumptions A1 through A12 are satisfied for loss 
functions c ~ and c q' and penalty terms , ~  and , ~  with respect to a particular DGP {it}. De- 

-2 - *  fine n~rzv ' (o~ n , Xn) with respect to c ~, c q' , /c~,/c~, and the random sample 7~n from the DGP as 
described in section 1.4. Let tb/, n be the i-th squared eigenvalue of the p + q-dimensional random 

matrix 1/* defined in section 1.4 (i.e., the function l~* evaluated at con).-* Then ~*,,n converges to 
the i-th element, w*, of a p + q-dimensional vector, w*, of strictly positive real numbers w.p. 1 as 

2 * n --+ oc (i = 1 . . . . .  (p + q)). If  the Variance MST null hypothesis holds, then n(rzn ((5 n, 7~n) has 
an asymptotic weighted chi-square distribution with weighting vector w*. If  the Variance MST 
null hypothesis is false, - 2 - .  then n~zn(oo n, Xn) --+ oc w.p.1 as n --+ oc. 

Proof of  Theorem 3. Please see following sections of this Appendix. [] 

Theorem 4: Direct Difference Loss MST. Assume Assumptions A1 through A12 are satis- 
fied for loss functions c ~ and c q' and penalty terms , ~  and , ~  with respect to a particular DGP 

{it}. Define Zn with respect to c ~, c q ' , /c~, /c~,  and the random sample 7~n from the DGP as 

described in section 1.4 such that Zn in section 1.5 is a particular realization of Zn. Assume the 
Variance MST Null Hypothesis is false. Then, given the null hypothesis of the Direct Difference 
Loss MST is true, x/-nZn converges in distribution to a Gaussian random variable with mean zero 
and variance one as n --+ oc. If  the null hypothesis of the Direct Difference Loss MST is false, 
then x/~Zn --+ ocw.p. 1 as n --+ oc. 
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Proof of  Theorem4. Define An* = C~ - On*. Define d* = c~ (O *, ii ) - cq' ( T* *, ii ). Let, 
g~-, denote the gradient of An* implying that: 

Then, using the mean-value theorem, 

(1))I< 
An(co n, 7~n) = + gn-(co*, Xn) [con - co*] + gn (7) 

z 

where ~n = Op(1)O(I #o* - co* I) is the remainder term and the notation Op(1) denotes a term 
converging in probabil i ty to zero by Theorem 2. Note that by Lemma 1 in the Appendix,  x /n[ (5*-  
co*] converges in distribution and so is bounded in probabili ty this implies that x/n~n --+ 0 in 
probabil i ty as n --+ oc. [] 

By Theorem 1 and Assumption A10, it follows that g~-(co*, 7~n) --+ 0 with probabil i ty one 
as n --+ oc. Using this observation with (7) gives 

where en = O (~/nl (5" -co* I)op (1) where op (1) denotes a term converging in probabil i ty to zero. 
Thus, in converges in probabil i ty to zero since O(I ~/n I (5" - co* l) is bounded in probability. 

Since the Variance MST null hypothesis 

Hff2(r)  : c~(O *, i t )  = c*(4,*, i t )  

w.p.1 is false by assumption, it follows that the variance of An(co*, Xn), cN(co*, Xn), is strictly 

positive given the null hypothesis Ho : A = l ~ (0 ' )  - - l  q' (7**) = 0 holds. Since ~r 2 is a continuous 

function on the compact set S2, cr 2 is also a bounded function on S2 as well. 
Using Assumptions A1 through A4 the result that in = op(1),  White 's  (1984; Theo- 

rem 5.19, p. 124) central limit theorem for dependent variables, and Slutsky's theorem (Serfling, 
1980, p. 19) it follows that ~ A n  has a mean zero asymptotic normal distribution with finite pos- 
itive variance cN under Ho. If  Ho is false, then/~n converges to a finite constant with probabili ty 

one by Theorem 1 implying that V/-~/~n --+ oc with probabili ty one as n --+ oc. 

Theorem 1. (DRMST) Assume Assumptions A1 through A12 are satisfied for loss func- 
tions c ~ and c q' and penalty terms ,~) and , ~  with respect to a particular DGP {it}. Define 
the null hypothesis Ho : l~(O *) = lq'(T**). Assume the DRMST is used to test Ho. Then, as 
n --+ oc, Pn (accept Ho [ Ho false) --+ 0. In addition, Pn (reject Ho [ Ho true) < o~ as n --+ oc. 

Proof of  Theorem 5. The proof  of Theorem 5 follows arguments presented in Vuong (1989). 
Let the notation Pn [VAR1] and Pn [VAR2] denote the estimated probabil i ty of Type 1 and Type 2 
errors respectively for the Variance MST based upon a particular sample size n. Let the notation 
Pn [DDL1] and Pn [DDL2] denote the estimated probabil i ty of Type 1 and Type 2 errors respec- 
tively for the Direct Difference Loss MST based upon a particular sample size n. Let the notation 
Pn [DRMST1] and pn[DRMST2] denote the estimated probabil i ty of Type 1 and Type 2 errors 
respectively for the DRMST based upon a particular sample size n. 

By Theorem 3, pn[VAR1] < o~ as n --+ oc. By Theorem 4, 

pn[DDL1] < c~ as n --+ oc. 
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From the definition of the DRMST (see Figure 2), the DRMST procedure rejects Ho if and only 
if both the Direct Difference Loss MST and Variance Test hypotheses are rejected. This implies 
that 

Pn [DRMST1] < max{pn [VAR1], Pn [DDL1]}. 

Thus, it follows that pn[DRMST1] < c~ as n ~ oc since pn[VAR1] and pn[DDL1] are asymp- 
totically bounded by the significance level c~. 

The Type 2 error probability for the DRMST is now considered. Let the Variance MST null 
(7 2 

hypothesis be denoted by H6 . Let ~Ho denote the assertion that the null hypothesis Ho is false. 
From the definition of the DRMST (see Figure 2), 

Pn [DRMST2] = pn[Accept H~ 2 OR (Reject H~ 2 AND Accept Ho) I ~Ho] 

pn[DRMST2] _< pn[Accept H~ 2 I ~Ho] + pn[Reject H~ 2 AND Accept Ho I ~Ho] 

(7 2 
Note that since ~Ho _c ~H6 , 

pn[Accept H~ 2 I ~Ho] _< p n [ A c c e p t  H ~  2 I ~ H ~  2] = pn[VAR2]. 

Note that 

Pn [Reject H~ 2 AND Accept Ho ] ~Ho] = Pn [Reject H~ 2 ] ~Ho]pn [DDL2] 

since 

ThUS, 

Pn [DDL2] = Pn [Accept Ho I ~Ho AND Reject H~2]. 

Pn [DRMST2] < Pn [VAR2] + Pn [DDL2] (8) 

The first term on the right-hand side of (8) converges to zero as n --+ oc by Theorem 3. The 
second term on the right-hand side of (8) converges to zero as n ~ oc by Theorem 4. [] 

Lemmas 

Lemma 1: Asymptotic Normality of Parameter Estimates. Given Assumptions A1 through 
A l l ,  

-*  - 1 / 2 - *  ~* x/n[Bn] An[o9 n - o~*] ~ .A/'(0, I). 

Proof of Lemma 1. Let ~n (o~*) = gn (o~*, Xn) be defined as 

Note that E [gn (o~*, Xn)] = 0 by Assumption A 10. Thus, B* is the asymptotic covariance of 
x/~gn (o~*, Xn). Note that B* is finite since B is a continuous function on the compact set ~2. Let h 
be some real vector of the same dimension as B* such that hTh = 1. Then from the results of The- 
orem 1 and the central limit theorem for dependent variables (e.g., Theorem 5.19 in White, 1984, 
p. 124; also see Settling, 1968), it follows that x/nhT [B*]-l~n (o~*) converges in distribution to a 
random variable which may be represented as hV~ * where ~* is a multivariate Gaussian random 
vector with mean 0 and identity covariance matrix I. Using the Cramer-Wold device (e.g., Propo- 
sition 5.1; White, 1984, p. 108), it then immediately follows that x/~[B*]-l/2~n (o~*) ~ .M(0, I). 
Also from Theorem 1, A~ is a strongly consistent estimator of A, and Assumption A10 implies 
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that A* is positive definite. The Lemma's  conclusion then immediately follows from White's 
(1994, pp. 89-90) Theorem 6.2. [] 

Lemma 2: Vuong, 1989. Define 

u = 
B e _B®,q~ 1 

_ B  q~, ® B q~ J 

and 

[ A ~ 0q,p 1 
Q =  - A * J  " 

Let U* be defined as U evaluated at o~*. Define C* = [A*]- IB * [A*] -1. Let Q* be Q evaluated 
at o~*. Then, U 'C*  = (R*) 2 and U* = Q*C*Q*. 

Proof of Lemma 2 (Vuong, 1989). Note Q ' C *  = - R * ,  U* = Q*C*Q*, and therefore 
U ' C *  = Q*C*Q*C* = ( - R * )  2. [] 

Lemma 3. Assume Assumptions A1 through A6, A12 holds. The null hypothesis for 
the Variance MST (~z2(o) *) = 0) is equivalent to the null hypothesis that c~(O *, f~t) = 
c*(~* ,  xt) w.p.1. 

Proof of Lemma 3. Assumptions A1 through A6 are required to guarantee the existence 
of the expectations in Assumption (6). The null hypothesis for the Variance MST is given by 
~z2(oo *) = 0 where ~z 2 is defined in (6). Using the definition of r* in section 1.3, it follows 

after some algebra that c~z2 (o~ *) = 0 is satisfied if and only if either: (1) r* = - 1 / ( 2 r ) ,  or (2) 
c~(O *, i t )  = c*(g,*, i t )  w.p.1. Assumption A12 (r* ~ - 1 / ( 2 r ) )  then rules out the possibility 
that r* = - 1 / ( 2 r ) .  [] 

Lemma 4. If Assumptions A1 through A l l  are satisfied, then as n --+ oc, the i-th element 
of the p + q-dimensional matrix R n, w/, n, converges w.p.1 to the i-th element of R*, w*. In 
addition, w*, is strictly positive for i = 1 . . . . .  (p + q). 

Proof of Lemma 4. Since the eigenvalues of the R matrix are continuous functions of the 
matrix's elements (Franklin, 1968, pp. 191-192), it follows that the i-th squared eigenvalue of 
the p + q-dimensional matrix R n, w[, n, converges w.p.1 to the i-th squared eigenvalue of R*, 
w*. It is now necessary to show that w* is strictly positive for i = 1 . . . . .  (p + q). By Lemma 2, 

(Q 'C*)  2 = (R*) 2. The matrix C* is strictly positive definite since A* and B* are strictly positive 
definite by Assumptions A10 and A11 and the definition of C*. The matrix Q ' C *  is a full rank 
real square matrix since Q* is full rank (since A* is positive definite and the definition of Q*). 
Thus, every eigenvalue of Q ' C *  is either strictly positive or strictly negative. This implies that 
all eigenvalues of (Q 'C*)  2 = (R*) 2 are strictly positive. [] 

Calculations of Variance Function Gradient and Hessian 

Derivation of the variance function gradient. The gradient of ~r2zw on f2, V~rz2 n : f2 x F n --+ 

J-~P+q is given by: 

[(eI - ey) e  1 
w L  ' = 2_n . L(e r e2)ve?J" 
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Derivation o f  the variance funct ion Hessian. The Hessian of ~r2zn on ~ ,  V2o "2zn : ~ × Fn --+ 

j~ (p+q)x (p+q) :  is given by V2a}, = 2Un q- En where 

F B~ • B •  • • • 

Un = / 
/ -B~ '® B~ 

and 

(e~  c ~ ) V 2 c ~  

E n  = - , _ _ ,  

n i=1 jcJi ,r  Oq,p 

Op,q 1 • 

Proof  o f  Theorem 3 

By Lemma 3, it follows that if the null hypothesis of the Variance MST is false, then 
c~ 2(o~*) > 0. Thus ,  - 2 - ,  n~rz,(OOn) --+ oo w.p.1 as n --+ oo by Theorem 1 and Theorem 2. This 
proves the theorem for the case where the Variance MST null hypothesis is false. Thus, in the 
remainder of the proof, it is assumed that the Variance MST null hypothesis is true. 

Using V2~r 2, = 2Un + En, Ho, and the definition of U from Lemma 2 we have, 

V2az2n = 2U* + Op(1) (9) 

evaluated at &* where U* is U evaluated at co*. 

Using the mean-value theorem and (9) and ~* = ~z,  (o~*, Xn), 

2 - ,  - = V c ~ z 2 ( o ) , , -  - ,  - , _ o ) , ] r U ,  - , _  Crz, (co n, Xn) [or*] 2 + Xn)(O) n - co*) + [co n [co n co*] + gn (10) 

where gn = op (1) o ( I  ~ - o~* 12) is the remainder term. 
Using Lemma 3 and the assumption that the Variance MST null hypothesis is true, the first 

two terms in (10) are equal to zero with probability one for all integer n. Thus, multiplying by n: 

h a }  - ,  = - ,  o ) , ] r u ,  - , _  (O)n, Xn) n[o) n - [o~ n o~*] + ~n (11) 

where en = op (1)O (hi ~* - co* 12) is a remainder term which converges in probability to zero 
since n[ &* - o~* 12 converges in distribution by Lemma 2 and thus is bounded in probability. 

Also note that by Lemma 1, ~ /~(~ . ) -1 /2(&,  _ o~*) ~ A/'(0, I). Let w* denote the i-th 

eigenvalue of (R*) 2 = U 'C* ,  i = 1 . . . . .  (p + q). Let zi denote a zero-mean, unit-variance 
Gaussian random variable. Thus, it follows from Lemma 1, Vuong's (1989) Lemma 3.2, and 
Slutsky's Theorem that: 

- 2  - *  
nO'zn (O)n~ Xn)  = 

p+q 

• - 2 -*  --  o9" Wi(Zi) +Op(1)O(nlO~n 12). 
i=1 

The result of the theorem then directly follows by using Lemma 1, noting that ~* ---> w* with 
l ,n  

probability one (Lemma 4) and then applying Slutsky's Theorem again. 
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