Category Archives: Constraint Satisfaction

LM101-071: How to Model Common Sense Knowledge using First-Order Logic and Markov Logic Nets

 LM101-071: How to Model Common Sense Knowledge using First-Order Logic and Markov Logic Nets Episode Summary: In this podcast, we provide some insights into the complexity of common sense. First, we discuss the importance of building common sense into learning machines. Second, we discuss how first-order logic can be used to represent common sense knowledge. Third, we describe… Read More »

LM101-070: How to Identify Facial Emotion Expressions Using Stochastic Neighborhood Embedding

LM101-070: How to Identify Facial Emotion Expressions in Images Using Stochastic Neighborhood Embedding Episode Summary: This 70th episode of Learning Machines 101 we discuss how to identify facial emotion expressions in images using an advanced clustering technique called Stochastic Neighborhood Embedding. We discuss the concept of recognizing facial emotions in images including applications to problems such as: improving… Read More »

LM101-043: How to Learn a Monte Carlo Markov Chain to Solve Constraint Satisfaction Problems (Rerun)

LM101-043: How to Learn a Monte Carlo Markov Chain to Solve Constraint Satisfaction Problems (Rerun of Episode 22) Welcome to the 43rd Episode of Learning Machines 101! We are currently presenting a subsequence of episodes covering the events of the recent Neural Information Processing Systems Conference. However, this week will digress with a rerun of Episode 22 which… Read More »

LM101-042: What happened at the Monte Carlo Markov Chain Inference Methods Tutorial at the 2015 Neural Information Processing Systems Conference?

LM101-042: What happened at the Monte Carlo Inference Methods Tutorial at the 2015 Neural Information Processing Systems Conference? Episode Summary: This is the second of a short subsequence of podcasts providing a summary of events associated with Dr. Golden’s recent visit to the 2015 Neural Information Processing Systems Conference. This is one of the top conferences in the… Read More »

LM101-039: How to Solve Large Complex Constraint Satisfaction Problems (Monte Carlo Markov Chain)[Rerun]

LM101-039: How to Solve Large Complex Constraint Satisfaction Problems (Monte Carlo Markov Chain) Episode Summary: In this episode we discuss how to solve constraint satisfaction inference problems where knowledge is represented as a large unordered collection of complicated probabilistic constraints among a collection of variables. The goal of the inference process is to infer the most probable values… Read More »

LM101-021: How to Solve Large Complex Constraint Satisfaction Problems (Monte Carlo Markov Chain)

Episode Summary: In this episode we discuss how to solve constraint satisfaction inference problems where knowledge is represented as a large unordered collection of complicated probabilistic constraints among a collection of variables. The goal of the inference process is to infer the most probable values of the unobservable variables given the observable variables. Show Notes: Hello everyone! Welcome… Read More »