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Abstract

Most recognition algorithms and neural networks can be
formally viewed as seeking a minimum value of an ap-
propriate objective function during either classification
or learning phases. The goal of this paper is to argue
that in order to show a recognition algorithm is making
intelligent inferences, it is not sufficient to show that
that the recognition algorithm is computing (or trying
to compute) the global minimum of some objective func-
tion. One must explicitly define a ”relational system”
for the recognition algorithm or neural network which
identifies the: (i) sample space, (ii) the relevant sigma-
field of events generated by the sample space, and (1i1)
the "relation” for that relational system. Only when
such a "relational system” is properly defined, is it pos-
sible to formally establish the sense in which computing
the global minimum of an objective function is an intel-
ligent inference.

OPTIMIZATION ALGORITHMS

In this discussion, algorithms will be defined from a dy-
namical systems perspective following the approach of
Golden (forthcoming, Chapter 1). Let S be a vector
space and let 7" be the set of non-negative integers. An
algorithm will be defined in this paper as a function that
maps an tnitial state x € S, an initial time tg € T, a se-
quence of external inputs u € U, and a final time treT
into some final state in @ € S. Thus, an algorithm is a
function @ : SxTxTxU — S. Some representative al-
gorithms that can be viewed as minimizing an objective
function are now presented.

Fuzzy Logic and Boolean Logic Algorithms

Let U/ be a set of assertions. For example, the assertion
u = Linear algebra is fun may be an element of /. Let
S = [0,1] be a set of fuzzy truth values.The algorithm
C:[0,1]xTxTxU—[0,1] is a Puzzy logic algorithm
which maps assertions into fuzzy truth values such as
false (0), almost false (0.3), almost true (0.7), very very
very true (0.95), etc.

A function ¥ designed to model the assignment of
truth to assertions from the perspective of a student re-
ceiving the grade of ”C” in a linear algebra class might
have the property that: For all z ¢ [0,1] and for all
to € T, ®(z,19,t;,u) — 0.3 as t; — oo (which at-
tempts to capture the idea that the assertion linear al-
gebra is fun should be assigned the fuzzy truth value

of almost false(0.3)). Another student who is receiv-
ing the grade of A” in a linear algebra class might
have the property that: For all 2 ¢ [0,1] and for all
to €T, ¥(x,to,t5,u) — 0.7 as t; — oo (which attempts
to capture the idea that the assertion linear algebra is
fun should be assigned the fuzzy truth value of almost
true(0.7)). The initial state x does not influence the
classification decision in this case because the assump-
tion that a previous classification influences the current
classification is not made. The initial time tp does not
influence the classification decision because it is assumed
that the classification strategy does not vary as a func-
tion of the initial stimulus presentation time.

A Boolean logic algorithm is a special case of a fuzzy
logic algorithm which has the form @ : {0, 1} xTxTx
U — {0, 1} since the system state z is restricted to the
values of either false (0) or true (1).

One can view a fuzzy logic algorithm (and thus a
Boolean logic algorithm as well) as seeking the minimum
value of a particular objective function for classification.
Let V : [0,1] x U — R. The classification objective func-
tion for a fuzzy logic algorithm ¥ given some assertion
u € U is a function V(u) : [0,1] — R. The compu-
tational goal of the fuzzy logic algorithm is to find a
global minimum of V(-;u) on [0,1] for a given u € /.
For example, suppose one wishes to set up the classifica-
tion objective function so that the fuzzy truth value of
ps € [0,1] is assigned to the assertion s € I/. One pos-
sible choice of V/(-;s) is to choose Vip;s) = 1if p # p,
and V(p;s) = 0if p = p,.

Recurrent Artificial Neural Networks

The Cohen-Grossberg class of continuous-time networks
include the continuous-time versions of the Hopfield
(1982, 1984) and Anderson’s BSB model (Anderson, Sil-
verstein, Ritz, and Jones, 1977; Golden, 1986) as impor-
tant special cases. Let x; be the activation of the ith unit
in a d neuron system. Let W be a d-dimensional ma-
trix of symmetric connections among the d-units. The
equation for one version of the Cohen-Grossberg network
is: ,
dz;/dt = z;(2:)[bi(ws) — Y wirSi(ar)]

k=1
where z; is the activation level of the ith neuron in the
d-neuron system, z; is an arbitrary function of #; such
that zi(z;) > 0 for all 2; € R. Let Foiny Fnar € R
such that F.;, < Foer. The sigmoidal function S :



R — [Fmin, Fmaz] is a continuous differentiable mono-
tonically increasing function. The function b; : R — R
Is an arbitrary continuous function. The real numbers
wixg = wyi; for 7 and k can be represented as the real
symmetric matrix W € R4 Let x = [z1,...,z4).
Let V' : [Fin, Frmar]® — R be defined such that for all
X € [Fmin ) Fmar]d'

Vix)= — Z/r by (i )SHu; ) du;+

1=1

d
(1/2) Y winSj(x;)Sk(ar).
Jj=1lk=1
The notation S!(u;) indicates the derivative of S; evalu-
ated at u;.
The solution to the Cohen-Grossberg differential equa-
tion may be expressed as an algorithm of the form:

T [Fmin\Fmar]d xT x T x RdXd =3 [Fmin:Fmar]d~

It can be shown that under certain conditions, a Cohen-
Grossberg algorithm

x(t) = [x,(2),. ..

has the property that for all ¢, and for all X(tp) near a
strict local minimum x* of V' that X(lf) = x" asty; —
0.

s .l‘d(f)] = ‘I’(X(fo). tO-tfv W)

A General Class of Learning Algorithms

Consider the large class of classification algorithms that
map an input vector s € R™ and a parameter vector
w € RY into a response vector r € R¥. This class of clas-
sification algorithm includes as important special cases:
linear regression and logistic regression algorithms, mul-
tilayer backpropagation learning algorithms (Rumelhart.
Hinton, and Williams, 1986), and the classical Widrow-
Hoff (1960) and perceptron (Rosenblatt, 1962) learning
algorithms.

A member of this class of architectures may be de-
noted by a differentiable function f : R™ x R — RE.
Let up, = (s!,0!),...(s”,0") be a set of n input/output
pairs (i.e., the training data) where the m-dimensional
real vector s’ is the jth input vector and the desired
response of the classification algorithm to s/ is the k-
dimensional real target vector o’ (j = 1..n);

A learning algorithm ® : RIXTxT'xU — RY maps an
initial parameter vector wo € RY, an initial time toeT,
a final time t; € T, and a set of training data u, € U
into a final parameter vector w* € R?. The learning
algorithm is designed (to the greatest extent possible)
to compute a w* which is a global minimum of some
learning objective function I(:;u,) : R — R. With
respect to the statistical pattern recognition literature,
the learning objective function is typically an expected
risk measure.

INTELLIGENT INFERENCE
In the previous section, a large class of representative
algorithms were introduced within a common theoreti-
cal framework. It was shown that all of these algorithms

may be viewed as seeking the minimum of some objec-
tive function. In some cases (such as the fuzzy logic
algorithm), the sense in which a given algorithm is mak-
ing an intelligent inference” is reasonably clear, while
such a notation is less clear for other algorithms (such
as the Cohen-Grossberg artificial neural network). More-
over, even when it is clear that one algorithm may be a
statistical pattern recognition algorithm while another
algorithm is a Boolean logic algorithm, how can one de-
velop a “science of intelligence” which shows explheitly
how the intelligent inferences of a Boolean logic algo-
rithm are related to the intelligent inferences of a linear
regression algorithm?

These issues will be addressed in this section in the fol-
lowing manner. First, the general concept of a relational
system with a measure is introduced as a scheme for rep-
resenting preferences among sets of inferences. The con-
cept of arelational system with a measure provides a uni-
fied framework for defining ”systems of intelligence” for
any algorithm whose computational goal involves mini-
mizing some objective function.

Relational Systems with Measures

The discussion in this section will follow the approach
of Golden (forthcoming, Chapters 6 and 7) relatively
closely. Note that the concept of an objective function
is defined in terms of classical (crisp) set theory con-
cepts, and so it will be convenient to continue with the
classical approach and define relational systems in terms
of crisp as opposed to fuzzy sets. Unless otherwise ex-
plicitly stated in the following discussion, all sets are
assumed to be classical (crisp) sets.

Inferences, events. and sigma-fields. Let S be a
set of "potential inferences”. Let F be the sigma-field
generated by S. For example, if S is a finite set. then
F 1s the set of all subsets of S. An element of £ (le., a
subset of S) is called an event. Thus, an event is a set
of possible inferences.

Consider the following example which involves a finite
set S which contains exactly two inferences. Let s1 de-
note the inference

s1 = { INFER : Ralph wins lottery on sunny day },
and let s, denote the inference
so = { INFER : Ralph wins lottery on windy day }.

Define a sample space S such that S = {s1,50},and so S
consists of two elements. The sample space S generates
the sigma-field F which is the set of all subsets of S and
which is given by the formula:

F={{}. {51}, {s2}, {51, 52}}.

Thus, the event {} € F is a theoretical model of the
set of inferences where one infers Ralph doesn’t win the
lottery on a sunny day and one infers Ralph doesn’t win
the lottery on a windy day. Another example of an event
is the set of inferences where one infers Ralph wins the
lottery on a sunny day. This event is {s1}. The event
{s1,s2} corresponds to the set of inferences where one
infers Ralph wins the lottery on either a sunny day or a
windy day.



Relational systems. A relational system will now be
defined with respect to the sigma-field F and the sam-
ple space S which generated F. The relational system
defines a set of inference preferences for some intelligent
agent A. A relation is a (crisp) set, w, of ordered pairs
{(Ey, E5)} where both members of each ordered pair in
the relation are elements of the sigma-field F generated
by 5. Although the semantic interpretation of the re-
lation w is essentially arbitrary, for the purposes of this
paper if (Ey, Es) € w then this means that the inferences
specified by event Ey are more appropriate than the in-
ferences specified by event Es. A relational system is a
triplet (S, F,w).

For example, as before, let S = {s1,s2} and let F
be the sigma-field generated by S. Suppose that agent
A believes that the inference that Ralph will win the
lottery on a sunny day is more appropriate than the in-
ference that Ralph will win the lottery on a rainy day.
Also assume agent A believes that the inference Ralph
will win the lottery on a rainy day is more appropri-
ate than the inference Ralph will not win the lottery at
all. Let the notation ({s;},{s2}) indicate that agent A
believes that the event {s;} is more appropriate than
the event {s»}. A theoretical model of the beliefs of
agent A may be represented in terms of the relation:

w={{s1}. {s2}), {s1 },{}D)}-

Relational system with a measure. A relational
system with a measure P : F — R 1s a relational system
(S, F,w) with the property that foralla,b € F: (a,b) €
w if and only if P(a) < P(b). It isimportant to note that
given a relational system (.S, F,w), it may be impossible
to construct (or find) a measure for (S, F,w).

For example, as before, let S = {s;,s2} and let
F be the sigma-field generated by S. Let w =
{({s1},{s2}),({s1},{})}. Let P be defined such that:
P({}) = 100, P({s1}) = 10, P({s2}) = 20, and
P({s1,s2}) = 0. The function P : F — R is thus one
possible measure for the relational system (S, F,w).

On the other hand, assume

W' = {({s1}, {s2}). ({s2}. {D)}-

A measure for the relational system (.S, F,w™) can not be
constructed. To see this, assume such a measure could
be constructed. Since the function P : F — R must
satisfy: P({s1}) < P({s2}) and P({s2}) < P({}) which
implies: P({s1}) < P({}). Butif P({s1}) < P({}), then
({s1},{}) must be a member of w* which contradicts the
original definition of w*.

Properties of relational systems with measures.
As previously noted, relational systems which do happen
to possess measures have some special properties. In this
section, those special properties will be discussed.

Suppose that an assumption has been made that given
any two events (1.e., sets of inferences) £y, Ey € F, an
agent A is able to decide whether or not the ordered pair
(Ey,E5) € w. The agent A’s relational system (S, F,w)
1s then said to be connected.

Now consider any three events Ey, Fs, F3 € F. In
addition, suppose one assumes that if agent A decides
that £ is more appropriate than £ (i.e., (F2, F1) € w)

and agent A decides that FE3 is more appropriate than
E, (le., (E3, Es) €w). If agent A obeys the transitivity
aztom of rational decision making, then agent A should
also decide that E3 is more appropriate than E; (i.e.,
(Es, E1) € w). A relation which satisfies the transitivity
axion is said to be transitive. Thus, the relation w =
{(Es, E1),(E3, E5)} is not transitive but the relation w =
{(Ea, E1),(E3, E9),(E3, E1)} is transitive.

From an engineering viewpoint, the identification of
such axioms of rational decision making is highly desir-
able since critical constraints upon the computational
goals of the decision making process are expressed by
such axioms. On the other hand, considerable research
in the field of human rational decision making (Tver-
sky, 1969; Kahneman and Tversky, 1979; Wason, 1966;
Johnson-Laird, Legrenzi and Legrenzi, 1972) has shown
that it is possible to find situations where the systems of
preference relationships used by humans are not consis-
tent with the transitivity axiom as well as other classical
axioms of rational decision making and logic.

Given these experimental findings, the viewpoint that
an intelligent algorithm’s relational system should be
constrained to be rational may seem misleading to neu-
roscientists and psychologists. It is important to realize,
however, that many intelligent algorithms never achieve
their idealized rational computational goals due to their
limited computational resources. Thus, intelligent sys-
tems which have been designed from a rational inference
making perspective could still exhibit the classical viola-
tions of logic and transitivity observed in human subjects
due to intrinsic computational limitations. Simon (1969)
has proposed this explanation of irrationality in human
performance.

Probabilistic measures for relational systems. A
very important measure for a relational system is the
probabilistic measure. Probabilistic measures have a dif-
ferent type of intelligence relative to ordinary measures.
For example, Cox (1946; see Golden, forthcoming, Chap-
ter 6, for a review) showed that a calculus of belief based
upon the probability theory satisfies axioms of rational
decision making such as: (i) consistency with the de-
ductive logic (i.e., Boolean algebra), (ii) the degree to
which # 1s an appropriate inference depends upon the
degree to which z is not an appropriate inference, and
(i11) the degree to which x is an appropriate inference
given inference y depends upon the degree to which the
conjunction of z and y is an appropriate inference and
the degree to which y is an appropriate inference.

Constructing an Algorithm’s Relational
System.

The concept of an algorithm that makes intelligent in-
ferences is now introduced. Suppose that some algo-
rithm @ : S x 7T x T x U — S can be shown (in some
sense) to seek a global minimum of the objective func-
tion V' : S — R. The first part of this paper discussed a
large class of algorithms with this property. It does not
make sense to attribute ”intelligence” to this optimiza-
tion algorithm since W is indeed merely an optimization
algorithm.



On the other hand, suppose that the designer of the al-
gorithm ¥ which seeks a global minimumof V' : S — R
makes a theoretical commitment and defines some rela-
tional system (S, F,w) with a measure P : F — R such
that @ is seeking to minimize P. Such a construction is
always possible (for example) by defining P({z}) = V(x)
for all x € S and then introducing any additional con-
straints on P such that 7 is completely defined on F.

Intelligent Inference Algorithms

If an algorithm can be shown to be seeking a global min-
imum of some measure P : F — R with respect to some
relational system (S, F,w), then that algorithm is seek-
ing an inference which is more appropriate (in the sense
defined by w) than any other inference. If the algorithm
successfully converges to a global minimum of P, then
that algorithm is making intelligent inferences of a par-
ticular type.

For example, certain types of behavioral characteris-
tics of birds may be viewed as intelligent within this
theoretical framework. A bird which flies into a glass
window might still be considered to be intelligent if it
has selected the most appropriate inference (infer no
obstruction ahead) with respect to it’s "bird relational
system”. An outside agent using "human intelligence”
might argue that the bird made an inappropriate infer-
ence but this argument is from the perspective of a "hu-
man relational system”. Birds have adapted over time to
be intelligent with respect to specific ecological niches.

Thus, a key feature of this definition of an "intelli-
gent inference” is that there are many different types
of intelligence. A taxonomy of these different systems
of intelligence can be developed by exploring similari-
ties and differences among classes of relational systems.
The concept of an intelligent inference algorithm is now
provided.

DEFINITION: Intelligent inference algo-
rithm. Let (S, F.w) be a relational system with
a measure P : F — R. Assume there exists an
s* € S such that {s*} is a global minimum of P.
Let @ : Sx T xT xU — S be an algorithm
with the property that for all s € I C S, for all
to €T, and for all u e RC U: ®(s,tg,tf,u) — s
ast; — 0. The algorithm W is an intelligent infer-
ence algorithm with w-type intelligence with respect
to (S, F,w), P, I, and R.

The concept of an intelligent inference algorithm has
thus been explicitly defined. It is important to note,
however, that there are a variety of ways in which a
given intelligent inference algorithm can fail to be intel-
ligent. First, the initial conditions (i.e., the "retrieval
cues”) of the intelligent inference algorithm may not be
sufficient to guarantee that the algorithm will converge
to a global minimum of P. Second, the numerical al-
gorithm designed to compute the optimal inference may
be suboptimal in some sense. Thus, the intelligent infer-
ence algorithm could fail to consistently make optimal
inferences due to algorithm failure. Third, the relational
system underlying the algorithm’s intelligent behavior
may not be appropriate to the information processing

task. Or, in other words, failures in intelligent inference
could result from flaws in the algorithm’s knowledge of
the problem. These ideas are discussed briefly in the
next section within the context of a practical learning
problem.

AN APPLICATION OF THE THEORY

Consider the problem of estimating the parameters of a
linear regression model which is defined by the formula:

o=ms+b+n

where the parameters m and b are real numbers, s € R is
a particular value of the predictor variable, n is a Gaus-
sian random variable with zero mean and variance pa-
rameter ¢, and 6 is a Gaussian random variable with
mean ms + b and variance ¢?. In particular, a linear re-
gression model is a set of probability distributions whose
elements are indexed by the three-dimensional real vec-
tor [m,b,0?].

The problem of parameter estimation for the linear
regression model may be solved using a member of the
general class of learning algorithms which were previ-
ously discussed in this paper. In particular, let the train-
ing data u, = {(s',0!),...,(s",0")} be a set of n in-
put/output pairs where s* € R is a value of the "input”
or predictor variable and o' € R is the “output” or out-
come variable. A linear regression learning algorithm is
an algorithm ¥ : R3 x T'x T x U — R? that maps
an initial parameter vector [mg,by,0f] € R3, training
data u, € U at some Initial time t; € T, and some
final time ¢t; € T, into the final parameter estimates
[P, b,, 03] € R3.

It can be shown that the final parameter estimates
{)?7,,.1),1.0"3] have the additional property that: Given
[my,, b, 2], the likelihood function (which measures the
probability of the observed data u, € U given a param-
eter vector [w,b,0?] € R3) p(-|) : U x R® — [0, )
has the property that the global maximum of p(u,|-) is
[w,b,07%].

The linear regression learning algorithm ¥ is an in-
telligent inference algorithm once the relational system
associated with the learning algorithm has been explic-
itly identified. Let an element of .S be an assertion of the
form: S = {Infer[w,b,c?] : [w,b,0%] € R3}. Let F be
the sigma-field generated by S. Let w define an appro-
priateness relation on F such that p(u,|-) is a measure
for the relational system (S, F,w).

Since the relational system (S, F,w) has a measure,
then it immediately follows that all optimal inferences
with respect to this relational system satisfy connectivity
and transitivity axioms of rational decision making. The
relational system (S, F,w) also has the property that if
one assumes that the marginal a priori probability dis-
tribution p([w,b, 0?]) exists and is uniform on the set of
global minima of p(uy,|-), then p(-|u,) is proportional to
p(un|-). This implies that the relational system (S, F,w)
also has the probabilistic measure p(-|u, ), and thus be-
haves according to a specific set of constraints.

These points are best illustrated with the following
simple example. Consider a linear regression algorithm



whose computations are implemented so that the algo-
rithm consistently makes optimal inferences. The linear
regression algorithm is used to estimate the parameters
of a regression line for each of the two data sets which
are depicted in Figure 1. If one simply defines the lin-
ear regression learning algorithm as an algorithm (possi-
bly implemented by a computer program), then it is not
clear in what sense the linear regression algorithm is in-
telligent (or if it is intelligent at all). One could construct
a relational system with a sum-squared error measure,
and then show that the algorithm is minimizing that
sum-squared error measure to find the parameter esti-
mates. Such an analysis would reveal that the algorithm
has intelligence in the sense that it makes inferences with
respect to the set of relational systems which satisfy the
connectivity and transitivity axioms. However, the lin-
ear regression learning algorithm may be viewed as seek-
ing the global minimum of a specific probabilistic mea-
sure for a relational system. A relational system with a
probabilistic measure makes inferences according to an
even more stringent set of decision making axioms than
a relational system whose measure is simply an arbitrary
objective function (e.g., the sum-squared error function).

The different ecological niches for the linear and lo-
gistic regression algorithms arise from their distinctive
probabilistic modeling assumptions. From a probabilis-
tic modeling perspective, the linear regression model ex-
pects the conditional mean of & given s, E[d]s] to be a
linear function of s. The logistic regression model, on the
other hand, expects that the conditional mean of & given
s, E[6]s] be a sigmoidal function of s. Each algorithm
makes intelligent and appropriate inferences with respect
to its own relational system regardless of the data set.
However, a given relational system may be appropriate
for one environment (i.e., type of data set) but may not
be appropriate with respect to another environment (i.e.,
another type of data set).

SUMMARY

Just as biological bird flying algorithms may have strong
expectations that glass-like obstructions do not exist,
both the linear and logistic regression algorithms have
strong expectations about their respective classes of
probabilistic environments as illustrated in Figure 1. Bi-
ological bird flying algorithms, linear regression learn-
ing algorithms, logistic regression learning algorithms,
Cohen-Grossberg artificial neural networks, and other
algorithms that seek to minimize some real-valued ob-
jective function are all intelligent algorithms (in some
sense) with respect to their designated ecological niches.
The challenge for the engineer concerned with the anal-
ysis and design of recognition algorithms which are truly
mtelligent is to explicitly identify the sense in which a
given algorithm is intelligent, explicitly identify how the
“intelligence” of one algorithm differs from another, and
explicitly identify the conditions under which an algo-
rithm with a particular relational system of intelligence
successfully achieves its computational goals. Explic-
itly 1dentifying relational systems and exploring similar-
ities and differences among such relational systems in an

algorithm-independent manner is an important step to-
wards achieving a true science of intelligent recognition
algorithms.
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Figure 1: Data points represented by open circles corre-
spond to a raw data set which is more compatible with
a logistic regression model as opposed to a linear regres-
sion model. Data points represented by filled-in circles
correspond to a raw data set which is more compatible
with a linear regression model as opposed to a logistic
regression model. Both linear regression and logistic re-
gression are equally intelligent algorithms with respect
to their "ecological niches”.



